行业资讯《人工智能转型手册》吴恩达公开企业AI转型秘诀

《人工智能转型手册》吴恩达公开企业AI转型秘诀

2018-12-18 10:30:28人工智能转型手册吴恩达
为了帮助企业能够成功转型为一家真正意义上的AI公司,吴恩达发布了一份《企业转型AI指导手册》。这是他在谷歌和百度带队AI的核心总结,也是他见得广、听得多、被咨询无数后的精华提炼。在手册里吴恩达提炼了传统企业转型成为AI企业的5个要素,并承诺本手册将引导企业转型成功。

 

在吴恩达看来,AI必将像电力一样改变各行各业,企业越早开启转型,就越能享受红利。但不是每家公司都能请到合适的高管人才,也不是谁都有帮助企业实现AI转型的经验。而吴恩达自己,先在谷歌,后在百度,方法论都得到了验证。

 

吴恩达认为,他的经验,可以复制。并且现在,他还将经验完整梳理、逐步分享,详细解释,实践6-12个月,就能初步看到切实效果。

《企业转型AI指导手册》主要讲了以下5个点:

一、通过实施试点项目来蓄势

二、组建内部人工智能团队

三、提供广泛的人工智能培训

四、制定人工智能战略

五、开发内部和外部沟通机制

 

一、第一个项目非常关键

 

部署前几个人工智能项目时,关键是要让项目取得成功,不能一味追求高价值项目。这些项目必须具备充足的意义,这样一来,初期的成功就能帮助你的企业熟悉人工智能,还能说服公司内部的其他人也对人工智能项目展开进一步投资。它们的规模不能太小,以免让其他人认为微不足道。关键是让飞轮不断旋转,好让你的人工智能团队获得足够的发展势头。

 

通常来讲,项目应该具备技术可行性,制定一个明确且可以量化的目标,并开发几套能在6到12个月内看到效果的解决方案。从最简单、一次性成功几率最大的新项目或者新技能下手,是最保险的,能够极大的鼓舞士气。士气高涨了,大家才会全身心的投入到公司中。吴恩达当年是选择了Google Speach。这个项目当然很重要,但不是Google当前最重要的项目。首战告捷后,就顺理成章的接更多项目了。

二、建立一个内部AI团队

 

虽然拥有深厚技术AI专业知识的合作伙伴可以帮助你们更快地获得最初动力,但从长远来看,建立内部AI团队来执行某些项目会更有效率。此外,你也会希望在公司内部保留一些项目,从而建立更独特的竞争优势。

 

重要的是。要从聘用高管级别的人来建立团队。在互联网兴起期间,聘请CIO是许多公司采用互联网策略的转折点。相比之下,那些许多独立实验的公司——从数字营销到数据科学实验再到新网站发布,则无法发挥互联网功能,因为这些小型试点项目无法扩大规模来改造公司的其他部门。

 

在AI时代,许多公司的关键时刻在于,组建一个可以帮助整个公司的集中式AI团队。如果他们拥有合适的技能,那么这个AI团队可以由CTO、CIO或CDO(首席数据官)带领。它也可以由专门的CAIO(首席AI官员)领导。

AI部门的主要职责是:

 

①组建一套人工智能技术来支持整个公司。

 

②在初期开展的一系列跨职能项目,用人工智能项目支持不同的部门/业务。在完成初期项目后,确定一套可以重复的流程,以便继续交付③一系列有价值的人工智能项目。

 

④为招聘和留住员工开发一套一致的标准。

 

开发覆盖整个公司的平台,这个平台不仅对各个部门都有帮助,而且不太可能由单一部门开发出来。例如,可以考虑跟CTO、CIO、CDO合作开发统一的数据库标准。许多公司都组织多个业务部门向CEO报告。通过建立新的AI团队,你能够将AI人才汇集到不同的部门,以推动跨职能项目。

 

新的职位描述和新的团队组织也会出现。我现在以机器学习工程师、数据工程师、数据科学家和AI产品经理等角色组织团队工作,这种方式与前AI时代不同。一个优秀的AI领导者将帮助你建立正确的流程。

 

目前AI人才争夺战已经打响,不幸的是大多数公司都很难雇用斯坦福大学的博士(或者甚至是斯坦福大学本科生)。由于人才战在短期内基本上是零和,因此与可以帮助你建立AI团队的招聘伙伴合作将给你带来非凡的优势。但是,为现有团队提供培训也是培养内部大量新人才的好方法。

 

三、提供广泛的AI培训

 

目前没有一家公司拥有足够的AI内部人才。虽然媒体对AI高薪的报道被过度炒作(媒体中引用的数字往往是离群值),但AI人才的确很难找到。幸运的是,随着数字内容的兴起,包括课程、电子书和YouTube视频等MOOC(大规模开放式在线课程),培养大量员工掌握AI等新技能比以往任何时候都更具成本效益。聪明的CLO(首席学习官)知道他们的工作是策划,而不是创造内容,然后建立流程以确保员工完成学习体验。

 

十年前,员工培训意味着聘请顾问来到办公室进行讲座。但这么做效率低下,投资回报率尚不清楚。相比之下,数字内容更实惠,并为员工提供更个性化的体验。如果您确实有预算聘请顾问,那么他们教授的内容应该是补充在线内容。(这被称为“翻转教室”教学法。我发现,如果实施正确的话,这将带来更舒适愉快的学习体验。例如,在斯坦福大学,我的校园深度学习课程就使用这个教育方式进行授课。)聘请一些AI专家来提供一些现场内容也可以激励员工学习这些AI技术。

 

AI将改变很多不同的工作。你应该给每个人提供他们在AI时代适应新角色所需的知识。咨询专家将有助你为你的团队开发定制课程。然而,一个名义上的教育计划可能如下所示:

 

1)高管和高级企业领导者:(≥4小时培训)

目标:让高管理解人工智能可以为企业做什么,开始制定人工智能战略,制定合适的资源分配决策,并与人工智能团队展开顺畅的合作,以支持有价值的人工智能项目。

课程:

①理解AI的基本业务,包括基本技、数据以及AI可以做什么和不能做什么。

②了解AI对公司战略的影响。

③关于AI应用到相邻行业或你所在行业的案例研究。

 

2)执行AI项目的部门领导:(≥12小时培训)

目标:部门负责人应能够为AI项目设定方向、分配资源、监控和跟踪进度,并根据需要进行调整,以确保项目的成功交付。

课程:

①理解AI的基本业务,包括基本技术、数据以及AI可以做什么和不能做什么。

②理解AI的基本技术,包括主要的算法类及其要求。

③理解AI项目的基本工作流程和流程、AI团队中的角色和职责,以及AI团队的管理。

 

3)AI工程师培训生:(≥100小时培训)

目标:新培训的AI工程师应该能够收集数据、训练AI模型,并提供特定的AI项目。

课程:

①深入了解机器学习和深度学习,基本理解其他AI工具。

②了解用于构建AI和数据系统的可用(开源和第三方)工具。

③能够实施AI团队的工作流程和流程。

④持续学习最新的AI技术。

 

四、制定AI战略

 

AI战略将引导你的公司在创造价值的同时,也建立可防御的护城河。一旦团队开始看到初始的AI项目的成功,并且对AI有了更深入的了解,你将能够认识到在哪些地方AI可以创造最大的价值,并将资源集中在这些地方。

 

一些高管会认为,制定AI战略应该是第一步。根据我的经验,大多数公司只有在对AI有了一些基本的经验之后才能够制定出一个周到的AI策略,这些经验你能在步骤1-3的过程中得到。建造防御护城河的方式也随着AI的发展而发展。以下是一些可以考虑的方法:

 

1)建立几个不同的AI资产,这些资产在大体上要符合一个一致的战略:AI使企业能够以新的方式建立独特的竞争优势。迈克尔•波特(Michael Porter)关于商业战略的开创性著作表明,建立壁垒业务的一种方法是,建立几项与总体战略大体一致的不同资产。因此,竞争对手很难同时复制所有这些资产。

 

2)利用AI来创建一个特定于你的行业的优势:与其与“广义”AI上领先的公司竞争,例如谷歌,我建议成为在你的行业内领先的AI公司,开发独特的AI能力将帮助你获得竞争优势。AI如何应县你的公司战略,需要在行业具体情况中考虑。

 

3)设计策略要符合“人工智能良性循环”的正反馈循环:在许多行业,我们会看到数据的积累能导致一项壁垒业务:例如,领先的网络搜索引擎,如谷歌、百度、Bing和Yandex,都拥有巨大的数据资产,能够了解用户在不同的搜索查询后点击的链接。这些数据有助于公司建立更准确的搜索引擎产品(A),这反过来帮助他们获得更多的用户(B),这反过来使他们拥有更多的用户数据(C),这种积极的反馈循环是竞争对手很难打破的。

数据是AI系统的关键资产。因此,许多伟大的AI公司都有复杂的数据策略。制定数据策略的关键要素包括:

 

1)战略性数据获取:100个数据点(“小数据”)到1亿个数据点(“大数据”)都能构建有用的AI系统。但是拥有更多的数据基本上不会有坏处。AI团队使用非常复杂的、耗时的策略来获取数据,而具体的数据获取策略是针对行业和具体情况的。例如,谷歌和百度都有许多免费产品,它们不盈利,但它们能获取可以在其他地方盈利的数据。

 

2)统一数据仓库:如果你有50个不同的数据库,分属50个不同的VP或部门的控制下,那么工程师或AI软件几乎不可能访问这些数据并“连接这些点”。相反,可以考虑将数据集中到一个或最多几个数据仓库中。

 

3)识别哪些数据是有价值的,哪些数据是没有价值的:拥有数TB的数据并不意味着AI团队能够从这些数据中创造价值。期待一个AI团队从大型数据集中神奇地创造出价值,这是很有可能失败。我不幸看过CEO过度投入于收集低价值数据,甚至只是为了数据去收购一个公司,然而这些数据完全没有价值。通过在数据获取过程中尽早引入AI团队可以避免这种错误,并让他们帮助你对需要获取和保存的数据类型进行优先排序。

 

创造网络效应和平台优势

 

最后,AI还可以用来建造更传统的护城河。例如,具有网络效应的平台是高度壁垒的业务。它们通常有一种天生的“赢家通吃”的动力,迫使企业要么快速增长,要么灭亡。如果AI能让你比竞争对手更快地获得用户,它就能被用来建造一条通过平台动态防御的护城河。更广泛地说,你还可以将AI用作低成本策略、高价值策略或其他业务策略的关键组件。

 

五、发展内部和外部沟通

 

AI将显著影响你的业务。如果它影响到你的关键利益相关者,那么你应该运行一个通信程序来确保一致性。以下是你应该为每个受众考虑的问题:

 

1)投资者关系:领先的AI公司,如谷歌和百度,现在都已经是更有价值的公司,部分原因是它们的AI能力,以及AI对其利润的影响。想投资人清晰地解释你的公司的AI价值创造理论,描述不断增长的AI能力,最后提供一个深思熟虑的AI战略,将有助于投资者恰当地评估你的公司。

 

2)政府关系:在监管严格的行业(自动驾驶汽车、医疗保健等),企业要想保持合规,面临着独特的挑战。构想一个可信的、引人注目的AI故事,解释你的项目可以给行业或社会带来的价值和好处,是建立信任和善意的重要一步。在推出项目时,应与监管机构进行直接沟通和持续对话。

 

3)客户/用户教育:AI可能会给你的客户带来显著的好处,所以要确保适当的营销和产品路线图信息的传播。

 

4)人才/招聘:由于AI人才匮乏,强大的雇主品牌将对你吸引和留住这类人才的能力产生重大影响。AI工程师希望从事令人兴奋且有意义的项目。适度地展示公司最初的成功可以大有裨益。

 

5)内部沟通:由于目前人们仍对AI不了解,尤其是通用人工智能被过度炒作,因此存在着恐惧、不确定性和怀疑。许多员工也担心自己的工作被AI自动化,尽管这在文化上存在很大差异(例如,这种担忧在美国比在日本出现得更多)。良好的内部沟通,无论是解释人工智能,还是消除这些员工的担忧,都将减少内部不愿采用AI的情况。

 

公司 + 深度学习技术 ≠ 转型做AI

 

你的公司想要在人工智能领域表现一流,就必须展开合适的组织调整,从而完成那些人工智能让你如虎添翼的事情。当今的每家大公司都或多或少使用人工智能技术。想要让你的公司真正在这一领域表现优秀,你需要明白以下道理:

 

1)系统地执行多个有价值的AI项目的资源:AI公司拥有外包和/或内部技术和人才,可以系统地执行多个AI项目,为业务带来直接价值。

 

2)对人工智能的充分理解:应该对人工智能有一般的了解,并采用适当的流程来系统地识别和选择有价值的人工智能项目。

 

3)战略方向:公司的战略大体上与人工智能未来的成功保持一致。

 

吴恩达最后强调,AI转型可能需要两三年时间,但应该6-12个月的时候,就的初见成效。做好转型,才能保持领先于竞争对手并利用AI推动公司发展。